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Agenda of Systems Theory

• Models and their Structure

• Fundamental Limitations (Laws)

• Uncertainty and Robustness

Robustness of performance uncertainty

at different levels of granularity

• Interconnections, Architecture and

Algorithms

Architecture = organization of

distributed algorithms and their

implementation in hardware
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Agenda of Systems Theory (cont.)

• Resource Management (Energy, Time,

Space, . . . )

A broad vision of Systems Theory aids in

providing a unified conceptual framework

for problems in different fields (Control,

Communication, Signal Processing,

Operations Research)

2



• Structure

• Action

• and their Interaction
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History of Science in the Sense of Kuhn:

Incommensurability

Thomas Kuhn in his book The Structure of

Scientific Revolutions distinguished between

Normal Science and Revolutionary Science.

Revolutionary Science (e.g., Quantum

Mechanics) arises when:

Existing Theories fail to explain

phenomena

A new “paradigm” is needed to reconcile

theory and experiment

With the new paradigm, a new language

is needed
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Something like that happened in the late

fifties and early sixties in the Systems and

Control field.

Earlier revolution (1948):

Shannon Information Theory and

Invention of the Transistor

“The Double Big Bang,” to quote Viterbi
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I want to suggest that in the Systems and

Control field, there was a crisis in the field

in the fifties. Let me suggest as pointers

three manifestations of that crises.

1. Internal Stability: Feedback Control

Systems designed from an external

(input/output) point of view failed to

recognize the presence of these internal

instabilities.

2. The approach to design of

multi-input/multi-output systems was

essentially a reduction to a

single-input/single-output system

through a decoupling procedure.
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3. The attempts to deal with the Wiener

filtering problem in the nonstationary

situation (Zadeh–Regazzini) leading to

some analog of the Wiener–Hopf

equation was not very successful (no

procedure analogous to Spectral

Factorization was available).

It is also worth mentioning that the

Mathematics that was prevalent in Linear

Systems Theory at the time was Complex

Function Theory and Transform Theory.
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New Element

Computation and the Concept of a Solution

Solution not necessarily an analytical

expression

Theories leading to Algorithms
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Advent of State Space Theory

(New Paradigm)

• New Language: Algebra, Differential

Equations

• Concept of State

• State Space Representation=














dx
dt = Fx(t) +Gu(t)

y(t) = Hx(t)

u = input, x = state, y = output

Extends to time-varying and nonlinear

systems
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Advent of State Space Theory

(New Paradigm cont.)

y(t) = He(t−t0)Fx(t0) +
∫ t

t0
He(t−s)FGu(s)ds

Reconciliation of Input-Output and Internal

(State) Point-of-view through introduction

of concepts of reachability (controllability)

and observability
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Natural Connection to Stability and Optimality

(Calculus of Variations)

Minimize

J(u, x) =
∫ t1

t0
[(x(t), Qx(t)) + (u(t), Ru(t))]dt

Q ≥ 0 , R > 0

Behavior of optimal control

u(t) = K(t)x(t) as t1→∞

Role of Controllability and Observability
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Deeper Aspects of Structure

Actions of semi-direct product

GL(n)× F ×GL(m)

on (F,G) controllable

(F,G) &→ (T−1(F +GK)T,GL)

Kronecker Invariants

Transporting the algebraic variety structure

of (F,G) to the quotient

Implications in System Identification
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How should we think about Graphs beyond

thinking about them as (V,E)?

How should we think about Systems of

Coupled Differential Equations evolving over

Graphs?

What are these invariants?

We should be able to distinguish between

differential equations evolving over trees

from differential equations evolving over

graphs with loops

We need Canonical Problems
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Pattern Recognition (Vision)

“Tranformation Group” acting on the space

of objects is not given but needs to be

identified!!

See the section on Pattern Recognition in

Minsky’s paper:

“Steps Towards Artificial Intelligence,”

Proc. IEEE, 1961.
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Influence of Systems Theory

in Coding Theory

and

Signal Processing

(Intersection with Behavioral View of Systems: Willems)

Linear Systems taking values in Finite

Groups (Forney–Trott)

Minimality, Controllability and Observality,

Duality in Signal Processing

State Space Viewpoint: Influence on

Algorithms exploiting structure

Adaptive Filtering
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Filtering and Stochastic Control:

Separation Principle















dX(t) = FX(t)dt+Gu(t) + JdW (t)

dY (t) = Hx(t)d + dV (t)

Choose u(t) = ϕ(ΠtY ) to minimize

J(u, x) =

E

[

∫ t1

t0
[(X(t), QX(t)) + (u(t), Ru(t))]dt

]
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Solution

u∗(t) = K(t)X̂(t)

X̂(t) = E(X(t)|FY
t )

Separation into estimation and deterministic

control

• Infinite-time

(Controllability, Observability, Stability)

• Non-linear

Smoothing (Decoding)

Compute: P(Xs, t0 ≤ s ≤ t1)|F
Y
t1
)
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Uncertainty and Robustness

Process and Measurement Uncertainty

vs.

Model Uncertainty

Approximation of Input-Output Maps

vs.

Approximation at the State Space

Representation

Two input-output maps may be close to

each other but the dimensions of their

corresponding state spaces may be far apart

(See: “The Legacy of George Zames,”

Mitter and Tannenbaum,

IEEE Trans. on Auto. Control)
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Fundamental Problem of Control: Design of

Control Systems whose performance is

robust against uncertainties

For linear time-invariant, bounded, causal

maps from L2(R)→ L2(R), which, from the

Segal–Foures theorem, is in one-to-one

correspondence with operators which are

multiplication operators by H∞-functions

Uncertainty in model represented by a ball

in H∞

Feedback: reduction of complexity

Deep connections to Operator Theory, in

particular the work of Krein
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Recent work of Y.H. Kim:

Feedback Capacity of Stationary Gaussian

Channels

The computation of feedback capacity is

posed as an Infinite Dimensional Variational

Problem and uses Systems Theory for its

solution
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Interestingly, Keynes viewed the

representation of “uncertainty” and how to

deal with uncertainty as one of the

fundamental problems of Macroeconomics

He also questioned the use of probability for

certain uncertain situations (prospect of a

European war is uncertain, the price of

copper, rate of interest twenty years hence)

Indeed, for systems which are

distributed, modeling and representation

of uncertainty remains a fundamental

issue
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Bayesian Inference

and

Statistical Mechanics
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Some Connections between Information Theory, Filtering

and Statistical Mechanics

Variational Approach to Bayesian Estimation

Stochastic Control Interpretation of Nonlinear Filtering
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Preliminaries

X,Y discrete random variables with joint distribution PXY

and marginals PX and PY

I(X; Y ) = EPXY



log
PXY

PX ⊗ PY



 : Mutual Information

Average measure of dependence of two random variables

Mutual Information is an example of the general notion of

relative entropy between two measures µ and ν on some

probability space ( ,F , P ) (discrete for the moment)

h(µ|ν) = Eµ log

(

µ

ν

)
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Properties:

(i) h(µ|ν) ≥ 0

(ii) h(µ|ν) = 0⇔ µ = ν

(iii) h(µ|ν) jointly convex in µ, ν

(But, not symmetric). Defines a pseudo-distance be-

tween two measures µ and ν.

We will have to deal with random variables in a more

general setting.
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Nonlinear Dynamical Systems
forced by (scaled) white noise

dxt

dt
= b(xt) + σ(xt)v̇t ,

where vt: Brownian motion and v̇t = white noise, formal

derivative of Brownian motion

Rewrite as Integral equation

xt = x0 +
∫ t

0
b(xs)ds+

∫ t

0
σ(xt)v̇tdt

= x0 +
∫ t

0
b(xs)ds+

∫ t

0
σ(xt)dvt ← Ito integral
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We want to think of x(·) := X as a map (random vari-

able) from ( ,F , P ) to (X ,B(X ) where X = C(0, T ;R)

and B(X ) is the Borel field associated with X . We call

the probability measure of X ∈ P(X ) the path space

measure

T

t

Xt (  ).

X is a random trajectory

Sometimes, we would want to look at these random tra-

jectories “through” a different measure P̂ (instead of P )

in order for it to “appear” differently, for example, tra-

jectories of Brownian Motion.
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Gibbs Measures:

Variational Characterization for Finite Systems

(H.O. Georgii: Gibbs Measures and Phase Transitions, Chapter 15)

Let S = finite set, and E = state space, finite set and

let = ES, finite.

Let be any potential, and H =
∑

A⊂S
A(w) be the

associated Hamiltonian

The unique Gibbs measure for is given by

ν(ω) = Z−1 exp[−H(ω)] , ω ∈

where

Z =
∑

ω∈

exp[−H(ω)] : Partition function
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For each probability measure µ on ,

µ(H) =
∑

ω∈

µ(ω)H(ω) and h(µ) = −
∑

ω∈

µ(ω) logµ(ω)

be the Energy and Entropy associated with µ

Then

µ(H)− h(µ) + logZ = h(µ|ν) ≥ 0

h(µ|ν) = 0⇔ µ = ν !

F(µ) = µ(H)− h(µ) : Free Energy

F(ν) = − logZ
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Generalization of these ideas to infinite systems leads to

characterization of translation-invariant Gibbs measures

as minimization of Specific Free Energy. A modification

of these ideas (using Exchangeability) leads to a proof

of the Noisy Channel Coding Theorem (BSC).

Variational Bayes and a Problem of Reliable Communication, Part II,

N. Newton, S.K. Mitter, to appear in J. Stat. Mech., 2012
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Information Theory, Filtering and Statistical Mechanics

(Xt)t≥0 Markov Process, time homogeneous

P (Xt ∈ B|Xr, r ∈ [0, s]) = π(t− s,Xs,B) 0 ≤ s ≤ t ≤ T

Pt is the distribution of Xt with density pt

Pt(B) = P (Xt ∈ B) =
∫

B
pt(x)λx(dx) λx : ref. measure

Diffusion

(Ap)(x) =
1

2

∑

i,j

∂2(ai,jp)

∂xi∂xj
(x)−

∑

i

∂

∂xi
(bip)(x) on R

d

Xt = X0 +
∫ t

0
b(Xs)dt+

∫ t

0
σ(Xs)dvs

a = σσ′
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Relative Entropy

h(µ|λ) =
∫

X
q(x) log q(x)λ(dx) µ has density q w.r.t. λ

= +∞ otherwise

〈f,λ〉 =
∫

X
f(x)λ(dx)

x: statistical mechanics system, associated with (Xt)t≥0

Pt: state of x at time t

PSS: unique invariant measure with density pSS

Internal Energy EX(Pt) = 〈Hx, Pt〉

Entropy Sx(Pt) = −h(Pt|λx)

Free Energy FX(Pt) = Ex(Pt)− Sx(Pt)

Energy Function Hx(x) = − log pSS(x)

Choice assures Energy Function is a Gibbs measure for x
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Proposition:

(i) Unique minimizer of Free Energy of x is PSS

(ii) Fx(PSS) = 0

(iii) Free Energy of x is non-increasing

Proof.

F(x)(Pt) = h(Pt|PSS)⇒ (i) and (ii)

To prove (iii), P
(2)
s,t = two point joint distribution

P
(2)
s,t (B,C) = P (Xs ∈ B,Xt ∈ C) =

∫

B
π(t− s,X,C)Ps(dx)

P
(2)
s,t,SS = joint distribution when Ps = PSS

Chain rule for Relative Entropy !

33



h(P
(2)
s,t |P (2)

s,t,SS)

= h(Pt|PSS) +
∫

h(˜(t, s, x, · )|˜SS(t− s, x, · ))Pt(dx)

≥ h(Pt|PSS)
(Chain Rule)

where ˜(t, s, x, · ) = regular (Xt = x)-conditional dis-

tribution for Xs under the joint distribution P
(2)
s,t and

˜SS(t − s, x, · ) is the equivalent under the joint distri-

bution P
(2)
s,t,SS.
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x: one component of a two-component energy conserv-

ing system that includes a unit temperature heat bath

with which x interacts

If Entropy of system = Entropy of the sum of two com-

ponents then any change in this entropy resulting from

the evolution of Pt = neg. of corresponding change in

Fx(Pt)

PSS: unique invariant measure with density pSS

Proposition: Entropy of closed system is maximized by

PSS and non-decreasing

Assertion (iii) in Proposition can be thought of as a Sec-

ond Law of Thermodynamics for x
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Observations (Interaction with Measurements)

Yt =
∫ t

0
g(Xs)ds+Wt

E

[

∫ t

0
|g(Xt)|

2dt <∞

(Zt|t ∈ [0, T ]): regular conditional probability of Xt

given (Ys|0 ≤ s ≤ t)

ξt: density

ξt(x) = ξ0(x) +
∫ t

0
(Aξs)(x)ds+

∫ t

0
ξs(x)(g(x)− 〈g, Zs〉)

′dνs

(1)

νt = Yt −
∫ t

0
〈g, Zs〉)ds Innovations
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We want to study the Information flow from the initial

state and running observations (Ys|0 ≤ s ≤ t) into the

regular conditional distribtution

PXt|(Ys,0≤s≤t) ( · , y)

(the filter).

Is this flow, conservative, dissipative?
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Information Theoretic Quantities

S(t) = I((Xs, s ∈ [0, T ]);Ys, s ∈ [0, t]) = supply

C(t) = I((Xs, s ∈ [t, T ]);Ys, s ∈ [0, t]) = storage

D(t) = S(t)− C(t) = dissipation

Proposition

S(t) = C(0) +
1

2
E
∫ t

0
|g(Xs)− 〈g, Zs〉|

2ds

C(t) = I(Xt;Zt) = Eh(Zt|Pt)

D(t) = EI((Xs, s ∈ [0, t]);Ys, s ∈ [0, t]|Xt)
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.
S(t) =

1

2
E|g(Xt)− 〈g, Zt〉|

2 (2)

.
D(t) = E





Apt

pt
log pt −

Aξt

ξ
log ξt



 (Xt) (3)

Sensitivity of Mutual Information C(t) to the randomiza-

tion in the dynamics of the signal

For Diffusions
.
D(t) =

1

2
E∇ log





ξt

pt





′

a∇ log





ξt

pt



 (Xt)

Rate of change of storage can be found by application

of Ito’s rule to

ξt log





ξt

pt



 (Xt)
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Equations (2) and (3) show that the supply of informa-

tion is associated with the second integral in (1)
∫ t

0
ξs(x)(g(x)− 〈g, Zs〉)

′dνs

and the dissipation associated with the first integral in (1)
∫ t

0
(Aξs)(x)ds

.
S(t) = signal to noise power ratio of the observations

and
.
D(t) = measure of the rate at which X forgets its past
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Notes on Proof:

C(t) = I(Xt;Ys; s ∈ [0, t]) = I(Xt;Zt)

S(t) = E logMt ,

where

Mt =
dZ0

dP0
(x0) exp

(

∫ t

0
g(xs)− 〈g, Zs〉

)′
dws

+
1

2

∫ t

0
|g(xs)− 〈g, Zs〉|

2ds)

Interactive Statistical Mechanics

The conditional distribution Zt takes into account the

partial observations available up to time t. Define an

energy function for X|Z in such a way that Zt is the

minimum free-energy state at time t.
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Let (Z̃t) be a stochastic process that satisfies the filter

equation (Z̃t /= Z0) with density (ξ̃t).

Eξ̃t corresponds to a state of X and satisfies the Fokker–

Planck equation.

Define energy function

HX|Z(x, t) = − log ξt(x)

EX|Z(Z̃t, t) = 〈HX|Z( · , t), Z̃t〉

SX|Z(Z̃t) = SX(Z̃t) = −h(Z̃t|λX)

FX|Z(Z̃t, t) = EX|Z(Z̃t, t)− SX|Z(Z̃t)
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Proposition

(i) Unique minimizer of the free energy of the conditional

system X|Z at time t in the state Zt

(ii) FX|Z(Zt, t) = 0 ∀ t

(iii) If EFX|Z(Z̃t, t) < ∞ and h(˜0| 0) < ∞, where ˜0 and

0 are the distributions of Z0 and Z̃0, then the Free

Energy of X|Z as state Z̃t evolves in a positive (Ys, s ∈

[0, t]) supermartingale.

Item (iii) is like a Conditional Second Law.

We can study the statistical mechanics of the joint sys-

tem (X,Z). Connection to Bayesian Inference as Free-

Energy Minimization
43



Data Assimilation ≡ Path Estimation or Filtering

or Prediction

Nonlinear Filtering: The Innovations Viewpoint

Stochastic Partial Differential Equation for the Evolution

of the Conditional Density

The Variational Viewpoint:

Information-theoretic Interpretation

Connections to Stochastic Control

Non-equilibrium Statistical Mechanics

44



Inference and Learning

Sanjoy K. Mitter

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Joint work with Charles Fefferman (Princeton),

Hariharan Narayanan (U Washington),

Nigel Newton (U Essex, UK)

DARPA Meeting at Johns Hopkins Applied Physics Lab

January 15, 2013



Bayesian Inference on Topological Structures

Abstract Framework

Prior Measures

Natural Observation Maps

Fitting Manifolds to Random Data
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Bayesian Inference & Free Energy Minimization

(Main reference: “A Variational Approach to Nonlinear

Estimation,” Mitter, S.K. and Newton, N.J. , Siam J. on

Control & Optimization, 42 2004.)
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Probability Measures on the Space

of Persistence Diagrams

(Yuriy Mileyko, Sayan Mukherjee, John Harer

Duke University, Mathematics, Statistical Science)

They prove:

Theorem

Space of Persistence Diagrams with the Wasserstein

metric is complete and separable. Allows us to do

Bayesian Inference on Space of Persistence Diagrams.

47



A Variational Formulation of Bayesian Estimation

Let ( ,F , P ) be a probability space, (X,X ) and (Y,Y)

Borel spaces, and X : → X and Y : → Y measurable

mappings with distributions PX, PY and PXY on X , Y

and X × Y, respectively. Suppose that:

(H1) there exists a σ-finite (reference) measure, λY , on Y

such that PXY # PX ⊗ λY . (This could be PY itself.)

Let Q : X × Y → [0,∞) be a version of the associated

Radon-Nikodym derivative, and

Ȳ =
{

y ∈ Y : 0 <
∫

X
Q(x, y)PX(dx) <∞

}

; (1)
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then Ȳ ∈ Y and PY (Ȳ) = 1. Let H : X×Y → (−∞,+∞]

be defined by

H(x, y) = − log(Q(x, y)) if y ∈ Ȳ

(2)
0 otherwise :

then PX|Y : X ×Y → [0,1], defined by

PX|Y (A, y) =

∫

A
exp(−H(x, y))PX(dx)

∫

X
exp(−H(x, y))PX(dx)

, (3)

is a regular conditional probability distribution for X given

Y ; i.e.
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PX|Y ( · , y) is a probability measure on X for each y,

PX|Y (A, · ) is Y-measurable for each A, and

PX|Y (A, Y ) = P (X ∈ A |Y ) a.s.

Eqs. (1)–(3) constitute an ‘outcome-by-outcome’

abstract Bayes formula, yielding a posterior probability

distribution for X for each outcome of Y .
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Let P(X ) be the set of probability measures on (X,X ),

and H(X) the set of (−∞,+∞]-valued, measurable func-

tions on the same space. For P̃X, P̂X ∈ P(X ) and H̃ ∈

H(X), we define

h(P̃X | P̂X) =
∫

X
log

(

dP̃X

dP̂X

)

dP̃X if P̃X # P̂X and the integral exists

(4)
+∞ otherwise,

i(H̃) = − log
(
∫

X
exp(−H̃)dPX

)

if 0 <
∫

X
exp(−H̃)dPX <∞

(5)
−∞ otherwise,

〈H̃, P̃X〉 =
∫

X
H̃dP̃X if the integral exists

(6)
+∞ otherwise.
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It is well known that the relative entropy h(P̃X | P̂X) can

be interpreted as the information gain of the probability

measure P̃X over P̂X. In fact, any version of − log(dP̃X/dP̂X)

is a generalisation of the Shannon information for X. For

almost all x, it is a measure of the ‘relative degree of sur-

prise’ in the outcome X = x for the two distributions P̃X

and P̂X. Thus, h(P̃X | P̂X) is the average reduction in

the degree of surprise in this outcome arising from the

acceptance of P̃X as the distribution for X, rather than

P̂X.
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If we interpret exp(−H̃) as a likelihood function for X, as-

sociated with some (unspecified) observation, then H̃(x)

is the ‘residual degree of surprise’ in that observation

if we already know that X = x, and i(H̃) is the ‘total

degree of surprise’ in that observation, i.e. the informa-

tion in the unspecified observation if all we know about

X is its prior PX. In what follows we shall call H̃(X)

the X-conditional information in the unspecified obser-

vation, and i(H̃) the information in that observation. (Of

course, H(X, y) and, respectively, i(H( · , y)) are the X-

conditional information and, respectively, information in

the observation that Y = y.)
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Theorem 1

(i) i ((H( · , y)) = minP̃X
[h(P̃X |PX) + 〈H( · , y), P̃X〉]

(ii) h(PX|Y ( · , y)|PX) = maxH̃

{

i(H̃)− 〈H̃, PX|Y ( · , y)
}

(iii) PX|Y ( · , y) is the unique minimizer in (i)

(iv) If H∗ is a maximizer in (ii), then ∃K ∈ R s.t. H∗(X) =

H(X, y) +K



Conceptualization

Information Processing over and above that in prior PX

In (i): Source of additional information is Y = y

Bayes Formula: Extracts info. pertinent h(PX|Y ( · , y)|PX)

and leaves residual 〈H,PX|Y 〉.

Input information is held in likelihood exp(−H( · , y)) and

extracted information in PX|Y ( · , y)
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Arbitrary Information procedure that postulates P̃X as

post-obs. distribution has access to additional informa-

tion. Hence: the notion Apparent Information.

In (ii): Source of additional information in Posterior Dis-

tribution PX|Y ( · , y). The aim now is to postulate an ob-

servation, i.e. a likelihood function exp(−H̃) which gives

rise to this observation.
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Input Information

h
(

PX|Y ( · , y)|PX

)

is merged with the residual information of the postulated

observation

〈H̃, PX|Y ( · , y)〉 :

Result ≥ i(H̃)

With equality ⇔ Obs. is compatible with PX|Y

i(H̃)− 〈H̃, PX|Y ( · , y)〉

= Inf. in Postulated Obs.

compatible with PX|Y ( · , y)

Compatible Inf. of exp(−H̃)
56
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Towards a Unified View

of

Communication and Control
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Feedback communication problem

Figure 1. Interconnection

Choose encoder and decoder to transmit
message over the channel to minimize the
probability of error

Channel at time t: P(dbt|at, bt−1) stochastic kernel

at = (a0, . . . , at)

Channel = Sequence of P(dbt|a
t, bt−1)

∣

∣

∣

t

t=1

Time ordering: Message = W,A1, B1, , AT ,BT , Ŵ =

Decoded message

W = (1,2, . . . ,M)
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Code function:

Ft = {ft : Bt−1→ A : measurable}

FT =
T
∏

t=1
Ft

Channel code function: fT = (f1, . . . , ft)

Distribution on code functions:

P (dft|ft−1)
∣

∣

∣

T
t=1

Channel code = list of M channel code

functions

Code functions are introduced to reduce the

feedback communication problem to a no

feedback communication problem.
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Average Measure of Dependence

Mutual Information

I(AT ;BT ) = EP
AT ,BT

log

(

PAT ,BT

PATPBT

)

= EP
AT ,BT

log

(

PBT |AT

PBT

)

I(AT ;BT ) =
T
∑

t=1

I(AT ;Bt|B
t−1)

Information transmitted to the receiver

depends on future (At+1, . . . , AT).

Directed Mutual Information (Causal)

I(AT → BT ) =
T
∑

t=1

I(At;Bt|B
t−1)
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To compute Mutual Information (Directed

Mutual Information), need joint distribution

PAT ,BT(da
T , dbT)

This can be done if we are given the channel

P (dbt|at, bt−1)
∣

∣

∣

T

t=1

and channel input distributions

Dt := P(dat|a
t−1, bt−1)

∣

∣

∣

T

t=1

Interconnection of channel input to channel

Channel Capacity

CT = sup
DT

1

T
I(AT → BT)

(Note: Optimization over original input

codes, not on space of code functions.)
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Markov Channel

P (dst+1|st, at, bt)
∣

∣

∣

T
t=1

: state transition

P (dbt|st, at)|
T
t=1 : channel output

Capacity of Markov Channels

sup
D∞

lim
T→∞

1

T
I(AT → BT)(1)

It turns out that by appropriately defining

sufficient statistics (πt) (conditional

distributions of the state given information

from encoder to decoder) and controls

ut(dat|πt), and state Xt = (πt−1, At−1, Bt−1)

and instantaneous cost c(xt, ut, ut+1), (1)

can be formulated as a Partially Observed

Stochastic Control Problem.
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In turn, this can be reformulated as a

fully-observable stochastic control problem.

This problem is more like a dual control

problem since the choice of the channel

input can help the decoder identify the

channel.

This is also an example where the

information pattern is nested: The encoder

has more information than the decoder.
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Communication

and

Control
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Stabilization equivalent to reliable

Communication through the loop

Signaling through the loop

Open Problem

Existence of Channel Linking

Controller and Actuator

Asymmetry in Information Transfer
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Problems for the Future

• Distributed Estimation and Control

Signalling: Controllers, Estimators have to

communicate their actions (estimates)

through the plant. There is a role for

Information Theory here.

(See recent work of Sahai on Witsenhausen problem)

See: Michael Spence (Nobel lecture)

Signalling in Retrospect and the Information

Structure of Markets

• Games as Multiple Feedback Loops

(Witsenhausen)

Related to Distributed Control
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Problems for the Future (cont.)

• Connections to Statistical Mechanics and

Field Theory

Information Theory of Message Passing

Algorithms

(See for example: Cramer’s Rule and Loop

Ensembles: A. Abdesselam and D.C. Brydges)

• Interconnections and Interactions

Optimal Transportation Theory

• What is the Nature of Experimental Work

in our Field?

Theory vs. Experiment

88



Problems for the Future (cont.)

• Systems View (Dynamical) of Economic

Classifying Equilibria

(See: Global Trade and Conflicting National

Interests: Ralph E. Gomory and William J. Baumol,

MIT)
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Concluding

Remarks
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